Establishing UDP Connections

In this chapter, we will look at how to send and receive User Datagram
Protocol (UDP) packets. UDP socket programming is very similar

to Transmission Control Protocol (TCP) socket programming, so it is
recommended that you read and understand cnapter 3, An In-Depth Overview
of TCP Connections, before beginning this one.

The following topics are covered in this chapter:

The differences between TCP socket programming and UDP socket
programming

The sendto () and recvfrom () functions

How connect) works on a UDP socket

Implementing a UDP server using only one socket

Using seiect () to tell when a UDP socket has data ready

Technical requirements

The example programs in this chapter can be compiled with any modern C
compiler. We recommend MinGW on Windows and GCC on Linux and
macOS. See appenaix &, Setting Up Your C Compiler On Windows, rppendix c,
Setting Up Your C Compiler On Linux, and zppendix o, Setting Up Your C
Compiler On macOS, for compiler setup.

The code for this book can be found in this book's GitHub repository: nttps://

github.com/codeplea/Hands-On-Network-Programming-with-C.

From the command line, you can download the code for this chapter with the
following command:

git clone https://github.com/codeplea/Hands-On-Network-Programming-with-C
cd Hands-On-Network-Programming-with-C/chap04

Each example program in this chapter runs on Windows, Linux, and macOS.
While compiling on Windows, each example program requires being linked
with the Winsock library. This can be accomplished by passing the -1ws2 32
option to gee.

We provide the exact commands that are needed to compile each example as
they are introduced.

All of the example programs in this chapter require the same header files and
C macros that we developed in chapter 2, Getting to Grips with Socket APIs.
For brevity, we put these statements in a separate header file, chapos.n, which
we can include in each program. For an explanation of these statements,
please refer to cnaprer 2, Getting to Grips with Socket APIs.

The content of chapos.n is shown in the following code:

#if defined(WIN32)

#ifndef WIN32 WINNT
#define WIN32 WINNT 0x0600
#endif

#include <winsock2.h>
#include <ws2tcpip.h>
#pragma comment (lib, "ws2 32.1ib")

#else

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <unistd.h>
#include <errno.h>

#endif

#if defined(WIN32)

#define ISVALIDSOCKET (s) ((s) != INVZ—\LID_SOCKET)
#define CLOSESOCKET (s) closesocket (s)

#define GETSOCKETERRNO () (WSAGetLastError())
#else

#define ISVALIDSOCKET (s) ((s) >= 0)

#define CLOSESOCKET (s) close (s)
#define SOCKET int

#define GETSOCKETERRNO () (errno)
#endif

#include <stdio.h>
#include <string.h>

How UDP sockets differ

The socket API for UDP sockets is only very slightly different than what
we've already learned for TCP. In fact, they are similar enough that we can
take the TCP client from the last chapter and turn it into a fully functional
UDP client by changing only one line of code:

1. Take tcp _client.c from Chapter 3, An]n—Depth Overview Of TCP
Connections, and find the following line of code:

| hints.ai socktype = SOCK STREAM;

2. Change the preceding code to the following:

| hints.ai socktype = SOCK DGRAM;

This modification is included in this chapter's code as uap ciient.c.

You can recompile the program using the same commands as before, and
you'll get a fully functional UDP client.

Unfortunately, changing the TCP servers of the previous chapters to UDP
won't be as easy. TCP and UDP server code are different enough that a
slightly different approach is needed.

Also, don't assume that because we had to change only one line of the code
that the client behaves exactly the same way — this won't happen. The two
programs are using a different protocol, after all.

Remember from chapter 2, Getting to Grips with Socket APIs that UDP does
not try to be a reliable protocol. Lost packets are not automatically re-
transmitted, and packets may be received in a different order than they were
sent. It is even possible for one packet to erroneously arrive twice! TCP
attempts to solve all these problems, but UDP leaves you to your own
devices.

Do you know what the best thing about a UDP joke is? I don't care if you get
it or not.

Despite UDP's (lack of) reliability, it is still appropriate for many
applications. Let's look at the methods that are used by UDP clients and
Servers.

UDP client methods

Sending data with TCP requires calling connect () to set the remote address and
establish the TCP connection. Thus, we use sena () with TCP sockets, as shown
in the following code:

connect (tcp_socket, peer address, peer address length);
send (tcp socket, data, data length, 0);

UDP is a connectionless protocol. Therefore, no connection is established
before sending data. A UDP connection is never established. With UDP, data
is simply sent and received. We can call connect () and then sena (), as we
mentioned previously, but the socket API provides an easier way for UDP
sockets in the form of the senato) function. It works like this:

sendto (udp_socket, data, data length, O,
peer address, peer address length);

connect () 0n @ UDP socket works a bit differently. All connect () does with a
UDP socket 1s associate a remote address. Thus, while connect) ona TCP
socket involves a handshake for sending packets over the network, connect () on
a UDP socket only stores an address locally.

So, a UDP client can be structured in two different ways, depending on
whether you use connect (), sena(), and recv (), or instead use senato () and

recvfrom().

The following diagram compares the program flow of a TCP Client to a UDP
Client using either method:

Establish connection
to server

Send data over
established connection

Receive data from
established connection

TCP Client

-

EEl

—

getaddrinfo()

\

socket()

Y

connect()

recv()

Yy

close()

Set
remote address

Send data to
remote address

Receive data from
remote address

UDP Client or

UDP Client

BEI

L

EEl]

- -
getaddrinfo() getaddrinfo()
Y Y
socket() socket()

Y
connect()
Y Y
send() sendto()
\ Y
recv() recvfrom()
Y Y
close() close()

Send data to
any given address

Receive data from
any address

Note that, while using connect (), the UDP Client only receives data from the
peer having the IP address and the port that is given to connect (). However,
when not using connect (), the recverom() function returns data from any peer that
addresses us! Of course, that peer would need to know our address and port.
Unless we call vina(), our local address and port is assigned automatically by
the operating system.

UDP server methods

Programming a UDP server is a bit different than TCP. TCP requires
managing a socket for each peer connection. With UDP, our program only
needs one socket. That one socket can communicate with any number of peers.

While the TCP program flow required us to use 1isten() and accept () to wait
for and establish new connections, these functions are not used with UDP. Our
UDP server simply binds to the local address, and then it can immediately
start sending and receiving data.

The program flow of a TCP Server compared to a UDP Server is as
follows:

Set
local address

Listen for connection
from client

Establish connection
from client

Receive data from
established connection

Send data over
established connection

TCP Server

UDP Server

e — et

getaddrinfo()

s —

!

getaddrinfo()

socket()

!

|

socket()

bind()

!

!

bind()

listen()

!

accept()

|

recv()

Y

!

recvfrom()

send()

!

!

sendto()

close()

!

close()

Set
local address

Receive data from
any address

Send data to
any given address

With either a TCP or UDP server, we use seiect () When we need to check/wait
for incoming data. The difference is that a TCP Server using seiect () 1s likely
monitoring many separate sockets, while a UDP Server often only needs to
monitor one socket. If your program uses both TCP and UDP sockets, you can
monitor them all with only one call to seiect ().

A first UDP client/server

To drive these points home, it will be useful to work through a full UDP
client and UDP server program.

To keep things simple, we will create a UDP client program that simply
sends the ne110 woria string to 127.0.0.1 on port soso. Our UDP server listens on
s0s0. It prints any data it receives, along with the sender's address and port
number.

We will begin by implementing the simple UDP server.

A simple UDP server

We will start with the server, since we already have a usable UDP client, that

1S, udp client.c.

Like all of our networked programs, we will begin by including the necessary
headers, starting with the nain() function, and initializing Winsock as follows:
/*udp_recvfrom.c*/

#include "chapO4.h"

int main() {

#if defined(WIN32)

WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
fendif

If you've been working through this book in order, this code should be very
routine for you by now. If you haven't, then please refer to chepter 2, Getting to
Grips with Socket APIs.

Then, we must configure the local address that our server listens on. We use
getaddrinfo () for this, as follows:

/*udp_recvfrom.c continued*/

printf ("Configuring local address...\n");
struct addrinfo hints;

memset (&¢hints, 0, sizeof (hints));
hints.ai family = AF INET;

hints.ai socktype = SOCK DGRAM;

hints.ai flags = AI PASSIVE;

struct addrinfo *bind address;
getaddrinfo (0, "8080", &hints, &bind address);

This differs only slightly from how we've done it before. Notably, we set
hints.ai socktype - sock_pcraM. Recall that socx stream was used there for TCP
connections. We are still setting nints.ai family = ar et here. This makes our

server listen for IPv4 connections. We could change that to ar rvers to make
our server listen for IPv6 connections instead.

After we have our local address information, we can create the socket, as
follows:

/*udp_ recvfrom.c continued*/

printf ("Creating socket...\n");
SOCKET socket listen;
socket listen = socket (bind address->ai family,
bind address->ai socktype, bind address->ai protocol);
if (!ISVALIDSOCKET (socket listen)) {
fprintf (stderr, "socket() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

This code is exactly the same as in the TCP case. The call to socket () uses our
address information from getaddarinzo () to create the proper type of socket.

We must then bind the new socket to the local address that we got from
getaddrinfo (). Lhis 1s as follows:

/*udp_recvfrom.c continued*/

printf ("Binding socket to local address...\n");
if (bind(socket listen,
bind address->ai addr, bind address->ai addrlen)) {
fprintf (stderr, "bind() failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;
}

freeaddrinfo (bind address) ;

Again, that code 1s exactly the same as in the TCP case.

Here 1s where the UDP server diverges from the TCP server. Once the local
address 1s bound, we can simply start to receive data. There is no need to call
listen() OF accept (). We listen for incoming data using recverom(), as shown here:

/*udp_ recvfrom.c continued*/

struct sockaddr storage client address;
socklen t client len = sizeof (client address);
char read[10247];
int bytes received = recvfrom(socket listen,
read, 1024,
OI
(struct sockaddr*) &client address, &client len);

In the previous code, we created a struct sockaddr storage to store the client's
address. We also defined socxien ¢ ciient 1en to hold the address size. This
keeps our code robust in the case that we change it from IPv4 to [Pv6. Finally,
we created a buffer, cnar reaar10241, to store incoming data.

recverom() 18 Used 1n a similar manner to recv (), €xcept that it returns the
sender's address, as well as the received data. You can think of recveron() as a
combination of the TCP server accept) and recv ().

Once we've received data, we can print it out. Keep in mind that the data may
not be null terminated. It can be safely printed with the . +s prints() format
specifier, as shown in the following code:

/*udp_recvfrom.c continued*/

printf ("Received (%d bytes): %.*s\n",
bytes received, bytes received, read);

It may also be useful to print the sender's address and port number. We can use
the getnameinto () function to convert this data into a printable string, as shown
in the following code:

/*udp_recvfrom.c continued*/

printf ("Remote address is: ");

char address buffer[100];

char service buffer[100];

getnameinfo (((struct sockaddr*)&client address),
client len,
address buffer, sizeof (address buffer),
service buffer, sizeof (service buffer),
NI NUMERICHOST | NI_NUMERICSERV);

printf ("%s %s\n", address buffer, service buffer);

The last argument t0 getnameinfo () (n1_nuMErICHOST | NI nuMErIcsERv) tells

getnameinfo () that we want both the client address and port number to be in
numeric form. Without this, it would attempt to return a hostname or protocol
name if the port number matches a known protocol. If you do want a protocol
name, pass in the nr_ncram flag to tell getnameinto () that you're working on a UDP
port. This 1s important for the few protocols that have different ports for TCP
and UDP.

It's also worth noting that the client will rarely set its local port number
explicitly. So, the port number returned here by getnameinto () 1s likely to be a
high number that's chosen randomly by the client's operating system. Even if
the client did set its local port number, the port number we can see here might
have been changed by network address translation (NAT).

In any case, if our server were to send data back, it would need to send it to
the address and port stored in ciient address. This would be done by passing

client_address‘U) sendto ().

Once the data has been received, we'll end our simple UDP server by closing
the connection, cleaning up Winsock, and ending the program:

/*udp_recvfrom.c continued*/
CLOSESOCKET (socket listen);

#if defined(WIN32)
WSACleanup () ;
#endif

printf ("Finished.\n");
return 0;

}

You can compile and run uap_recveron.c 0N Linux and macOS by using the
following commands:

gcc udp_recvfrom.c -o udp recvfrom

./udp_recvfrom

Compiling and running on Windows with MinGW is done as follows:

gcc udp_recvfrom.c -o udp_recvfrom.exe -lws2_ 32

udp_recvfrom.exe

While running, it simply waits for an incoming connection:

EX Command Prempt - udp_recvfrom.exe — O Y

gcc udp_recvfrom.c -o udp recvfrom.exe -lws2 32

udp_recvfrom.
Configuring loca

Creating socket

Binding socket to local address.

You could us€ uap_c1ient to connect to udp recverom fOr testing, or you can
implement uap senato, which we will do next.

A simple UDP client

Although we've already shown a fairly full-featured UDP client, uap c1ient.c, it
is worthwhile building a very simple UDP client. This client shows only the
minimal required steps to get a working UDP client, and it uses senato ()
instead of sena).

Let's begin the same way we begin each program, by including the necessary
headers, starting nain (), and initializing Winsock, as follows:

/*udp_sendto.c*/
#include "chapO4.h"
int main() {

#if defined(WIN32)
WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
fendif

We then configure the remote address using getaddrinto (). In this minimal
example, we use 127.0.0.1 as the remote address and soso0 as the remote port.
This means that it connects to the UDP server only if it's running on the same
computer.

Here is how the remote address is configured:

/*udp_sendto.c continued*/

printf ("Configuring remote address...\n");

struct addrinfo hints;

memset (&hints, 0, sizeof (hints));

hints.ai socktype = SOCK DGRAM;

struct addrinfo *peer address;

if (getaddrinfo("127.0.0.1", "8080", &hints, &peer address)) {
fprintf (stderr, "getaddrinfo() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

Notice that we hardcoded 127.0.0.1 and soso 1nto the call to getadarinfo). Also,
notice that we've set nints.ai_socktype = sock_pcraM. ThiS tellS getaadarinfo() that we
are connecting over UDP. Notice that we did not set ar mver or ar mvere. This
allows getaaarinfo () to return the appropriate address for IPv4 or IPv6. In this
case, it i1s [Pv4 because the address, 127.0.0.1, 1s an IPv4 address. We will
COVEr getaddrinfo () INn mMore detail in chapter s, Hostname Resolution and DNS.

We can print the configured address using getnameinto (). The call to getnameinto ()
is the same as in the previous UDP server, uap recverom.c. It works as follows:

/*udp_sendto.c continued*/

printf ("Remote address is: ");

char address buffer[100];

char service buffer[100];

getnameinfo (peer address->ai addr, peer address->ai addrlen,
address buffer, sizeof (address buffer),
service buffer, sizeof (service buffer),
NI NUMERICHOST | NI_NUMERICSERV) ;

printf ("%$s %$s\n", address buffer, service buffer);

Now that we've stored the remote address, we are ready to create our socket
with a call to socket (). We pass in fields from peer adaress to create the
appropriate socket type. The code for this is as follows:

/*udp_sendto.c continued*/

printf ("Creating socket...\n");
SOCKET socket peer;
socket peer = socket (peer address->ai family,
peer address->ail socktype, peer address->ai protocol);
if (!ISVALIDSOCKET (socket peer)) {
fprintf (stderr, "socket() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

Once the socket has been created, we can go straight to sending data with
sendto (). There 18 no need to call connect (. Here 1s the code to send ze110
wor1d to our UDP server:

/*udp_sendto.c continued*/

const char *message = "Hello World";
printf ("Sending: %s\n", message);
int bytes sent = sendto(socket peer,

message, strlen (message),
0,

peer address->ai addr, peer address->ai addrlen);
printf ("Sent %d bytes.\n", bytes sent);

Notice that senato () 1s much like sena (), except that we need to pass in an
address as the last parameter.

It is also worth noting that we do not get an error back if sending fails.

send () SIMply tries to send a message, but if it gets lost or is misdelivered
along the way, there is nothing we can do about it. If the message 1s important,
it is up to the application protocol to implement the corrective action.

After we've sent our data, we could reuse the same socket to send data to
another address (as long as it's the same type of address, which is IPv4 in this
case). We could also try to receive a reply from the UDP server by calling
recverom (). INOte that if we did call recverom() here, we could get data from
anybody that sends to us — not necessarily the server we just transmitted to.

When we sent our data, our socket was assigned with a temporary local port
number by the operating system. This local port number is called the
ephemeral port number. From then on, our socket is essentially listening for
a reply on this local port. If the local port is important, you can use vina() to
associate a specific port before calling sena().

If multiple applications on the same system are connecting to a remote server
at the same port, the operating system uses the local ephemeral port number to
keep replies separate. Without this, it wouldn't be possible to know which
application should receive which reply.

We'll end our example program by freeing the memory for peer address, closing
the socket, cleaning up Winsock, and finishing rain (), as follows:

/*udp_sendto.c continued*/

freeaddrinfo(peer_address);
CLOSESOCKET (socket peer) ;

#if defined(WIN32)
WSACleanup () ;
#endif

printf ("Finished.\n");

return 0;

You can compile udp_sendato.c on Linux and macOS using the following
command:

|gcc udp_sendto.c -o udp_sendto

Compiling on Windows with MinGW is done in the following way:

|gcc udp_sendto.c -o udp_sendto.exe -lws2_32

To test it out, first, start uap recverom In @ separate terminal. With uap recverom
already running, you can start uap sendto. It should look as follows:

udp_recvfrom.c -o udp_recvfrom.ex

udp_recvfrom.exe
Configuring local address...
Creating :
Binding socket to local address...
Received (11 bytes): Hello World
Remote address is: 127.8.8.1 55476
Finished.

BN C\WINDOWS\system32\cmd.exe — n W

udp _sendto.c -o udp sendto.exe 32

udp_sendto.exe
Configuring remote address...
Remote address is:

Creating socket..

Hello World

J it

inished.

If no server is running on port soso, udp sendto Still produces the same output.
udp_sendto doesn't know that the packet was not delivered.

A UDP server

It will be useful to look at a UDP server that's been designed to service many
connections. Fortunately for us, the UDP socket API makes this very easy.

We will take the motivating example from our last chapter, which was to
provide a service that converts all text into uppercase. This is useful because
you can directly compare the UDP code from here to the TCP server code
from chapter 3, An In-Depth Overview of TCP Connections.

Our server begins by setting up the socket and binding to our local address. It
then waits to receive data. Once it has received a data string, it converts the
string into all uppercase and sends it back.

The program flow looks as follows:

getaddrinfo()

\ 4

socket()

A

select()

Has
socket()
input?

Yes
recvfrom()

\ A

toupper()

\ A

send()

If you compare the flow of this program to the TCP server from the last
chapter (chapter 3, An In-Depth Overview of TCP Connections), you will find
that it's much simpler. With TCP, we had to use 1isten) and accept (). With
UDP, we skip those calls and go straight into receiving data with recverom().
With our TCP server, we had to monitor a listening socket for new
connections while simultaneously monitoring an additional socket for each
connected client. Our UDP server only uses one socket, so there is much less
to keep track of.

Our UDP server program begins by including the necessary headers, starting
the main () function, and initializing Winsock, as follows:

/*udp_serve toupper.c*/

#include "chapO4.h"
#include <ctype.h>

int main() {

#if defined(WIN32)
WSADATA d;
if (WSAStartup (MAKEWORD (2, 2), &d)) {
fprintf (stderr, "Failed to initialize.\n");
return 1;
}
#endif

We then find our local address that we should listen on, create the socket, and
bind to it. This is all exactly the same as in our earlier server, uap recverom.c.
The only difference between this code and the TCP servers in cnapter 3, An In-
Depth Overview of TCP Connections, is that we use sock pcrav instead of
sock_stream. Recall that sock peram specifies that we want a UDP socket.

Here is the code for setting the address and creating a new socket:

/*udp_serve toupper.c continued*/

printf ("Configuring local address...\n");
struct addrinfo hints;

memset (&hints, 0, sizeof (hints));
hints.ai family = AF INET;

hints.ai socktype = SOCK DGRAM;

hints.ai flags = AI PASSIVE;

struct addrinfo *bind address;
getaddrinfo (0, "8080", &hints, &bind address);

printf ("Creating socket...\n");
SOCKET socket listen;
socket listen = socket (bind address->ai family,
bind address->ai socktype, bind address->ai protocol);
if (!ISVALIDSOCKET (socket listen)) {

fprintf (stderr, "socket() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

Binding the new socket to the local address is done as follows:

/*udp_serve toupper.c continued*/

printf ("Binding socket to local address...\n");
if (bind(socket listen,

bind address->ai addr, bind address->ai addrlen)) {
fprintf (stderr, "bind() failed. (%d)\n", GETSOCKETERRNO()) ;
return 1;

}

freeaddrinfo (bind address);

Because our server uses seiect (), we need to create a new ra set to store our
listening socket. We zero the set using #v_zero(), and then add our socket to this
set using =o_ser (). We also maintain the maximum socket in the set using

max_socket.

/*udp_serve toupper.c continued*/

fd set master;

FD ZERO (&master) ;

FD SET (socket listen, &master);
SOCKET max_socket = socket listen;

printf ("Waiting for connections...\n");

Note that we don't really have to use seiect () for this program, and omitting it
would make the program simpler (S€€ udp server toupper simpie.c). However, we
are going to use se1ect () because it makes our code more flexible. We could
easily add in an additional socket (if we needed to listen on multiple ports,
for example), and we could add in a se1ect () timeout if our program needs to
perform other functions. Of course, our program doesn't do those things, so we
don't need se1ect), but I think that most programs do, so we will show it that
way.

Now, we are ready for the main loop. It copies the socket set into a new
variable, reaas, and then uses sei1ect () to wait until our socket is ready to read
from. Recall that we could pass in a timeout value as the last parameter to
select () 1If We want to set a maximum waiting time for the next read. Refer to cn
apter 3, An In-Depth Overview of TCP Connections, the Synchronous
multiplexing with select() section, for more information on seiect ().

Once seiect () returns, we use ro_1sser () to tell if our particular socket,
socket listen, 18 Teady to be read from. If we had additional sockets, we would
need to use o 1sser() for each socket.

If 7o 1sser() returns true, we read from the socket using recverom(). recvrom()
gives us the sender's address, so we must first allocate a variable to hold the

address, that 1s, ciient aqaress. Once we've read a string from the socket using
recverom (), WE convert the string into uppercase using the C toupper () function.
We then send the modified text back to the sender using senato (). Note that the
last two parameters to senato () are the client's addresses that we got from

recvifrom().

The main program loop can be seen in the following code:

/*udp_serve toupper.c continued*/

while (1) {
fd set reads;
reads = master;

if (select (max socket+l, &reads, 0, 0, 0) < 0) {
fprintf (stderr, "select() failed. (%d)\n", GETSOCKETERRNO ()) ;
return 1;

}

if (FD_ISSET (socket listen, &reads)) {
struct sockaddr storage client address;
socklen t client len = sizeof (client address);

char read[1024];
int bytes received = recvfrom(socket listen, read, 1024, O,
(struct sockaddr *)e&client address, &client len);
if (bytes received < 1) {
fprintf (stderr, "connection closed. (%d)\n",
GETSOCKETERRNO ()) ;
return 1;

}

int j;
for (J = 0; J < bytes received; ++3j)
read[]j] = toupper (read[j]);
sendto (socket listen, read, bytes received, 0,
(struct sockaddr*)s&client address, client len);

} //if FD_ISSET
} //while (1)

We can then close the socket, clean up Winsock, and terminate the program.
Note that this code never runs, because the main loop never terminates. We
include this code anyway as good practice; in case the program is adapted in
the future to have an exit function.

The cleanup code is as follows:

/*udp_serve toupper.c continued*/

printf ("Closing listening socket...\n");
CLOSESOCKET(socket_listen);

#if defined(WIN32)
WSACleanup () ;
fendif

printf ("Finished.\n");

return 0;

That's our complete UDP server program. You can compile and run it on
Linux and macOS as follows:

gcc udp_serve_toupper.c -o udp_serve_toupper
./udp_serve_toupper

Compiling and running on Windows with MinGW is done in the following
manner:

gcc udp_serve_toupper.c -o udp_serve_toupper.exe -lws2 32

udp_serve_toupper.exe
You can abort the program's execution with Ctrl + C.

Once the program is running, you should open another terminal window and
run the wap_c1ient program from earlier to connect to it, as follows:

|udp_client 127.0.0.1 8080

Anything you type in usp c1ient should be sent back to it in uppercase. Here's
what that might look like:

gcc udp_serve toupper.c -o udp serve toupper.exe -lus2 32

$ udp_serve_toupper.exe
Confipuring local address...
Creating socket...

- n
SOCK -

$ gcc udp client.c -o udp client.ex

$ udp_client.exe 127.0.8.:
Configurin ote addr
Remote address i :
Creating socket...

Connecting...

string to convert.

Example string to convert.

EXAMPLE STRING TO CONVERT.

You may also want to try opening additional terminal windows and connecting
Wlth udp_client.

See udp_serve toupper simple.c fOI‘ an imlementation that doesn't US€ select (), but
manages to work just as well anyway.

Summary

In this chapter, we saw that programming with UDP sockets is somewhat

easier than with TCP sockets. We learned that UDP sockets don't need the
listen (), accept (), OF connect () function calls. This is mostly because senato ()
and recverom() deal with the addresses directly. For more complicated

programs, we can still use the seiect () function to see which sockets are ready
for I/O.

We also saw that UDP sockets are connectionless. This is in contrast to
connection-oriented TCP sockets. With TCP, we had to establish a
connection before sending data, but with UDP, we simply send individual
packets directly to a destination address. This keeps UDP socket
programming simple, but it can complicate application protocol design, and
UDP does not automatically retry communication failures or ensure that
packets arrive in order.

The next chapter, chapter s, Hostname Resolution and DNS, is all about
hostnames. Hostnames are resolved using the DNS protocol, which works
over UDP. Move on to chapter 5, Hostname Resolution and DNS, to learn
about implementing a real-world UDP protocol.

Questions

Try answering these questions to test your knowledge of this chapter:

1. How do senato) and recveron() differ from sena) and recv()?
2. Can sena() and recv() be used on UDP sockets?

3. What does connect () do in the case of a UDP socket?

4. What makes multiplexing with UDP easier than with TCP?
5. What are the downsides to UDP when compared to TCP?
6. Can the same program use UDP and TCP?

The answers can be found in appenaix a, Answers to Questions.

